Automatic particle selection: results of a comparative study.
نویسندگان
چکیده
Manual selection of single particles in images acquired using cryo-electron microscopy (cryoEM) will become a significant bottleneck when datasets of a hundred thousand or even a million particles are required for structure determination at near atomic resolution. Algorithm development of fully automated particle selection is thus an important research objective in the cryoEM field. A number of research groups are making promising new advances in this area. Evaluation of algorithms using a standard set of cryoEM images is an essential aspect of this algorithm development. With this goal in mind, a particle selection "bakeoff" was included in the program of the Multidisciplinary Workshop on Automatic Particle Selection for cryoEM. Twelve groups participated by submitting the results of testing their own algorithms on a common dataset. The dataset consisted of 82 defocus pairs of high-magnification micrographs, containing keyhole limpet hemocyanin particles, acquired using cryoEM. The results of the bakeoff are presented in this paper along with a summary of the discussion from the workshop. It was agreed that establishing benchmark particles and using bakeoffs to evaluate algorithms are useful in promoting algorithm development for fully automated particle selection, and that the infrastructure set up to support the bakeoff should be maintained and extended to include larger and more varied datasets, and more criteria for future evaluations.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملA Comparative Study of the Prediction Stock Crash Risk by using Meta- Heuristic & Regression
One of the most important methods of opacity accounting information by management is to accelerate the identification of good news versus delaying the identification of bad news on profits, but there is always a final level of accumulation of bad news in the company, and by reaching that its final level, these bad news will be released, which will lead to a Stock Price Crash Risk. In fact, stoc...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 145 1-2 شماره
صفحات -
تاریخ انتشار 2004